

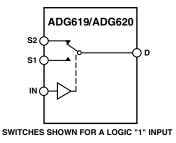
6 Ω (Max) On Resistance

Rail-to-Rail Operation

2.7 V to 5.5 V Single Supply

±2.7 V to ±5.5 V Dual Supply

0.8 Ω (Max) On-Resistance Flatness


Typical Power Consumption (<0.1 μ W)

FEATURES

CMOS ± 5 V/ ± 5 V 4 Ω Single SPDT Switches

ADG619/ADG620

FUNCTIONAL BLOCK DIAGRAM

TTL/CMOS Compatible Inputs APPLICATIONS Automatic Test Equipment Power Routing Communication Systems Data Acquisition Systems Sample and Hold Systems Avionics Relay Replacement

Battery-Powered Systems

GENERAL DESCRIPTION

The ADG619 and the ADG620 are monolithic, CMOS SPDT (single pole, double throw) switches. Each switch conducts equally well in both directions when on.

8-Lead SOT-23 Package, 8-Lead Micro-SOIC Package

The ADG619/ADG620 offers low On-Resistance of 4 Ω , which is matched to within 0.7 Ω between channels. These switches also provide low power dissipation yet give high switching speeds.The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action.

The ADG619/ADG620 are available in 8-lead SOT-23 packages and 8-lead Micro-SOIC packages.

Table I. Truth Table for the ADG619/ADG620

IN	Switch S1	Switch S2	
0	ON	OFF	
1	OFF	ON	

PRODUCT HIGHLIGHTS

- 1. Low On Resistance (R_{ON}) (4 Ω typ)
- 2. Dual ± 2.7 V to ± 5.5 V or Single 2.7 V to 5.5 V
- 3. Low Power Dissipation. CMOS construction ensures low power dissipation.
- 4. Fast toN/toFF
- 5. Tiny 8-Lead SOT-23 Package and 8-Lead Micro-SOIC Package

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG619/ADG620-SPECIFICATIONS

DUAL SUPPLY¹ ($V_{DD} = +5 V \pm 10\%$, $V_{SS} = -5 V \pm 10\%$, GND = 0 V. All specifications -40°C to +85°C unless otherwise noted.)

	B Version -40°C to			
Parameter	+25°C	+85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{SS} to V _{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (R _{ON})	4	. 33	Ω typ	$V_{\rm S} = \pm 4.5 \text{ V}, I_{\rm S} = -10 \text{ mA},$
	6	8	Ω max	Test Circuit 1
On Resistance Match Between	Ū	0		
Channels (ΔR_{ON})	0.7		Ω typ	$V_{S} = \pm 4.5 \text{ V}, I_{S} = -10 \text{ mA}$
Channels (ARON)	1.1	1.35	$\Omega \max$	$v_{S} = \pm 4.5 v_{3} v_{5} = 10 \text{ mm}$
On Projetance Flatness (P)	0.7	0.8	Ω typ	$V_{\rm S} = \pm 3.3 \text{ V}, I_{\rm S} = -10 \text{ mA}$
On-Resistance Flatness (R _{FLAT(ON)})	0.7	1.2	$\Omega \max$	$v_{\rm S} = \pm 3.5 v, 1_{\rm S} = -10 {\rm mA}$
		1.2	52 IIIax	
LEAKAGE CURRENTS				V_{DD} = +5.5 V, V_{SS} = -5.5 V
Source OFF Leakage I _S (OFF)	± 0.01		nA typ	$V_{\rm S} = \pm 4.5 \text{ V}, V_{\rm D} = \mp 4.5 \text{ V},$
	±0.25	± 1	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01		nA typ	$V_{\rm S} = V_{\rm D} = \pm 4.5$ V, Test Circuit 3
	±0.25	± 1	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.0	v IIIax	
-	0.005			V - V or V
I _{INL} or I _{INH}	0.005	101	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
C Divited Invest Competence	2	± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ADG619				
t _{ON}	80		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
	120	155	ns max	$V_s = 3.3 V$, Test Circuit 4
t _{OFF}	45		ns typ	$R_{\rm L} = 300 \Omega, C_{\rm L} = 35 \mathrm{pF}$
011	75	90	ns max	$V_s = 3.3 V$, Test Circuit 4
Break-Before-Make Time Delay, t _{BBM}	40		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$, Test Circuit 5
ADG620				.31 .32
t _{on}	40		ns typ	$R_{\rm L} = 300 \Omega, C_{\rm L} = 35 \mathrm{pF}$
-OIN	65	85	ns max	$V_s = 3.3 V$, Test Circuit 4
t _{OFF}	200		ns typ	$R_{\rm L} = 300 \ \Omega, \ C_{\rm L} = 35 \ pF$
UTI	330	400	ns max	$V_{s} = 3.3 V$, Test Circuit 4
Make-Before-Break Time Delay, t _{MBB}	160	100	ns typ	$R_{\rm L} = 300 \ \Omega, C_{\rm L} = 35 \ pF$
mare before break finite belay, t _{MBB}	100	10		$V_{\rm S} = 0$ V, Test Circuit 6
Charge Injection	110	10	ns min	$V_S = 0 V$, Test Circuit o $V_S = 0 V$, $R_S = 0 \Omega$, $C_L = 1 nF$,
Charge Injection	110		pC typ	$V_S = 0 V, R_S = 0 \Omega, C_L = 1 nF,$ Test Circuit 7
Off Isolation	-67		dP true	$R_{\rm L} = 50 \Omega$, $C_{\rm L} = 5 \text{ pF}$, $f = 1 \text{ MHz}$,
	-07		dB typ	$R_L = 50 \Omega_2, C_L = 5 \text{ pr}, 1 = 1 \text{ MHz},$ Test Circuit 8
Channel-to-Channel Crosstalk	67		dB true	
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
	100		NATT -	Test Circuit 10 $P = 50 O C = 5 \pi F$ Test Circuit 0
Bandwidth –3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _s (OFF)	25		pF typ	f = 1 MHz
$C_{D,}C_{S}(ON)$	95		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
	0.001		μA typ	Digital Inputs = $0 \text{ V or } 5.5 \text{ V}$
IDD			1 F - 7 F	
I _{DD}		1.0	uA max	
I _{DD} I _{SS}	0.001	1.0	μA max μA typ	Digital Inputs = 0 V or 5.5 V

NOTES

¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY¹ ($V_{DD} = +5 V \pm 10\%$, $V_{SS} = 0 V$, GND = 0 V. All specifications -40°C to +85°C unless otherwise noted.)

	B Version -40°C to				
Parameter	+25°C	+85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}	v	$V_{DD} = 4.5 V, V_{SS} = 0 V$	
On Resistance (R _{ON})	7		Ω typ	$V_{\rm S} = 0$ V to 4.5 V, $I_{\rm S} = -10$ mA,	
On Resistance (RON)	ß10	12.5	$\Omega \max$	Test Circuit 1	
On Resistance Match Between	1510	12.5	32 IIIax		
Channels (ΔR_{ON})	0.8		Ω typ	$V_{s} = 0 V \text{ to } 4.5 V, I_{s} = -10 \text{ mA}$	
Channels (ΔR_{ON})	1	1.2	$\Omega \max$	$v_{S} = 0$ v to 4.5 v, $v_{S} = -10$ mA	
On Basistance Eletrase (B)	0.5			$V_{S} = 1.5 \text{ V to } 3.3 \text{ V}, I_{S} = -10 \text{ mA}$	
On-Resistance Flatness (R _{FLAT(ON)})	0.5	0.5	Ω typ	$v_{\rm S} = 1.5 v \ 10 \ 5.5 v \ 1_{\rm S} = -10 \ \text{mA}$	
		0.8	Ωmax		
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S} = 1 \text{ V}/4.5 \text{ V}, V_{\rm D} = 4.5 \text{ V}/1 \text{ V},$	
- · · ·	±0.25	± 1	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_{\rm S} = V_{\rm D} = 1 \text{ V}/4.5 \text{ V},$	
	± 0.25	± 1	nA max	Test Circuit 3	
DIGITAL INPUTS		2.4	¥7		
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.1	μA max		
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
ADG619					
t _{on}	120		ns typ	$R_{\rm L} = 300 \ \Omega, C_{\rm L} = 35 \ \rm pF$	
-UIV	220	280	ns max	$V_{\rm S} = 3.3 \text{ V}$, Test Circuit 4	
torr	50	200	ns typ	$R_{\rm L} = 300 \ \Omega, C_{\rm L} = 35 \ \text{pF}$	
t _{OFF}	75	110	ns max	$V_{\rm S} = 3.3 \text{ V}$, Test Circuit 4	
Brook Roford Make Time Dolor +	70	110			
Break-Before-Make Time Delay, t_{BBM}	10	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_L = V_L = 2.2 V$. Test Circuit 5	
ADG620		10	ns min	$V_{S1} = V_{S2} = 3.3 V$, Test Circuit 5	
	50		no tree	$P = 300 O C = 25 \pi E$	
t _{ON}	50	110	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	85	110	ns max	$V_s = 3.3 V$, Test Circuit 4	
t _{OFF}	210	100	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$	
	340	420	ns max	$V_s = 3.3 V$, Test Circuit 4	
Make-Before-Break Time Delay, t_{MBB}	170		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
		10	ns min	$V_s = 3.3 V$, Test Circuit 6	
Charge Injection	6		pC typ	$V_{\rm S} = 0 \text{ V}, \text{ R}_{\rm S} = 0 \Omega, \text{ C}_{\rm L} = 1 \text{ nF},$	
				Test Circuit 7	
Off Isolation	-67		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz,$	
				Test Circuit 8	
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,	
			_	Test Circuit 10	
Bandwidth –3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9	
C _s (OFF)	25		pF typ	f = 1 MHz	
$C_{\rm D}, C_{\rm S}$ (ON)	95		pF typ	f = 1 MHz	
POWER REQUIREMENTS	0.001			$V_{DD} = 5.5 V$	
I _{DD}	0.001	1.0	μA typ	Digital Inputs = 0 V or 5.5 V	
		1.0	μA max		

NOTES

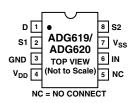
¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

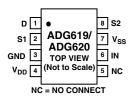
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to V_{SS}
V_{DD} to GND $\ldots \ldots -0.3$ V to +6.5 V
V_{SS} to GND \ldots +0.3 V to -6.5 V
Analog Inputs ² V_{SS} –0.3 V to V_{DD} +0.3 V
Digital Inputs ² -0.3 V to V _{DD} +0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D 50 mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range $\dots -65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature 150°C
Micro-SOIC Package
θ_{JA} Thermal Impedance
$\theta_{\rm JC}$ Thermal Impedance
SOT-23 Package
θ_{JA} Thermal Impedance 229.6°C/W
θ_{JC} Thermal Impedance
Lead Temperature, Soldering (10 seconds) 300°C
IR Reflow, Peak Temperature 220°C


NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS

8-Lead SOT-23 (RT-8)

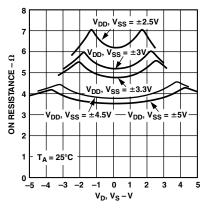
8-Lead Micro-SOIC (RM-8)

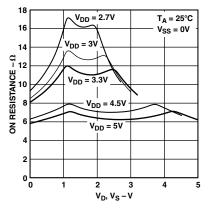
ORDERING GUIDE

Model	Temperature Range	Branding Information*	Package Description	Package Option
ADG619BRM	–40°C to +85°C	SVB	Micro-SOIC (microSmall Outline IC)	RM-8
ADG619BRT	–40°C to +85°C	SVB	SOT-23 (Plastic Surface Mount)	RT-8
ADG620BRM	–40°C to +85°C	SWB	Micro-SOIC (microSmall Outline IC)	RM-8
ADG620BRT	–40°C to +85°C	SWB	SOT-23 (Plastic Surface Mount)	RT-8

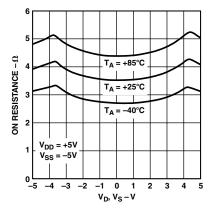
*Branding on SOT-23 and Micro-SOIC packages is limited to three characters due to space constraints.

CAUTION -

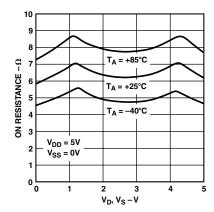

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG619/ADG620 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


TERMINOLOGY

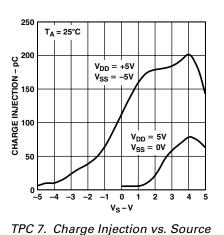
V _{DD} Most Positive Power Supply Potential V _{SS} Most Negative Power Supply in a Dual Supply Application. In single supply applications, this show	
	ıld be
tied to ground at the device.	
GND Ground (0 V) Reference	
I _{DD} Positive Supply Current	
I _{SS} Negative Supply Current	
S Source Terminal. May be an input or output.	
D Drain Terminal. May be an input or output.	
IN Logic Control Input	
R _{ON} Ohmic Resistance Between D and S	
DR _{ON} On Resistance Match Between Any Two Channels, i.e., R _{ON} Max – R _{ON} Min.	
R _{FLAT(ON)} Flatness is Defined as the Difference Between the Maximum and Minimum Value of On Resist	tance as
Measured Over the Specified Analog Signal Range.	
I _s (OFF) Source Leakage Current With the Switch "OFF"	
I _D , I _S (ON) Channel Leakage Current With the Switch "ON"	
V _D (V _S) Analog Voltage on Terminals D, S Maximum Input Valtage for Logia "0"	
V _{INL} Maximum Input Voltage for Logic "0" V _{INH} Minimum Input Voltage for Logic "1"	
IINL(IINH)Input Current of the Digital InputCs (OFF)"OFF" Switch Source Capacitance	
C _D , C _S (ON) "ON" Switch Capacitance	
t _{ON} Delay Between Applying the Digital Control Input and the Output Switching On	
t _{OFF} Delay Between Applying the Digital Control Input and the Output Switching Off	
t _{MBB} "ON" Time, Measured Between the 80% Points of Both Switches, When Switching From One Ad	dress
State to Another	ui 000
t _{BBM} "OFF" Time or "ON" Time Measured Between the 90% Points of Both Switches, When Switchin	g from
One Address State to Another	8
Charge Injection A Measure of the Glitch Impulse Transfered From the Digital Input to the Analog Output During Swit	tching
Crosstalk A Measure of Unwanted Signal that is Coupled Through From One Channel to Another as a Resu	
Parasitic Capacitance	
Off Isolation A Measure of Unwanted Signal Coupling Through an "OFF" Switch	
Bandwidth The Frequency Response of the "ON" Switch	
Insertion Loss The Loss Due to the ON Resistance of the Switch	

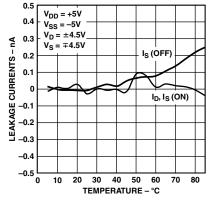

Typical Performance Characteristics

TPC 1. On Resistance vs. $V_D (V_S)$ – Dual Supply

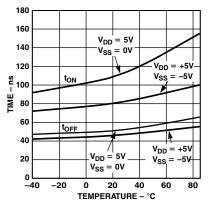


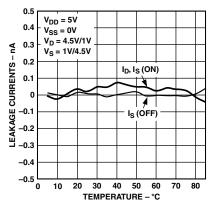
TPC 2. On Resistance vs. $V_D(V_S)$ – Single Supply

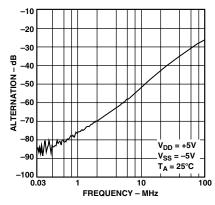



TPC 3. On Resistance vs. V_D (V_S) for Different Temperatures – Dual Supply

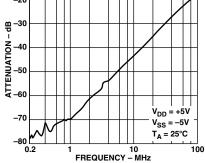
ADG619/ADG620–Typical Performance Characteristics



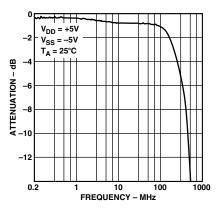

TPC 4. On Resistance vs. V_D (V_S) for Different Temperatures – Single Supply



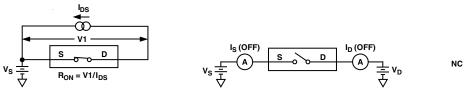
TPC 5. Leakage Currents vs. Temperature – Dual Supply

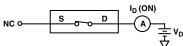

TPC 6. Leakage Currents vs. Temperature – Single Supply

TPC 9. Off Isolation vs. Frequency



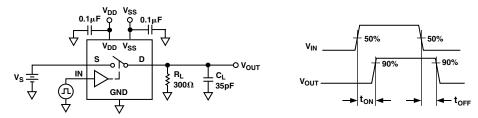
Voltage

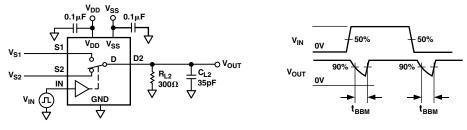

TPC 10. Crosstalk vs. Frequency


TPC 8. t_{ON}/t_{OFF} Times vs. Temperature

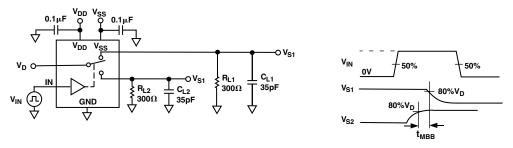
TPC 11. On Response vs. Frequency

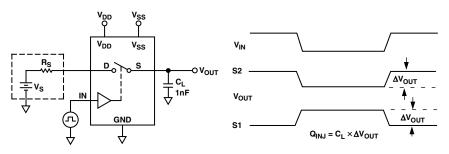
TEST CIRCUITS

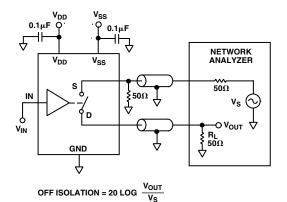


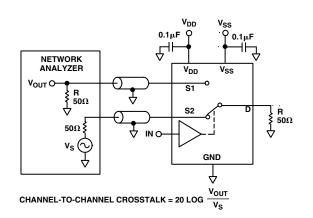

Test Circuit 1. On Resistance

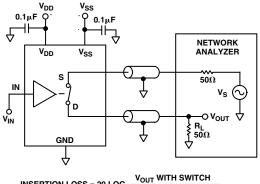
Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times

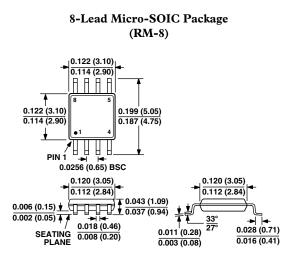

Test Circuit 5. Break-Before-Make Time Delay, t_{BBM} (ADG619 Only)


Test Circuit 6. Make-Before-Break Time Delay, t_{MBB} (ADG620 Only)

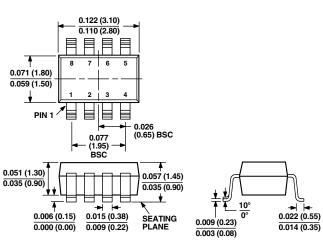

Test Circuit 7. Charge Injection

Test Circuit 8. Off Isolation

Test Circuit 10. Channel-to-Channel Crosstalk



INSERTION LOSS = 20 LOG $\frac{V_{OUT} \text{ WITH SWITCH}}{V_{S} \text{ WITHOUT SWITCH}}$


Test Circuit 9. Bandwidth

Dimensions shown in inches and (mm).

8-Lead Plastic Surface Mount Package (RT-8)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.