CMOS, 3Ω Low Voltage 4-/8-Channel Multiplexers

ADG708/ADG709

FEATURES

1.8 V to 5.5 V Single Supply
± 3 V Dual Supply
3Ω On-Resistance
0.75Ω On-Resistance Flatness
100 pA Leakage Currents
14 ns Switching Times
Single 8-to-1 Multiplexer ADG708
Differential 4-to-1 Multiplexer ADG709
16-Lead TSSOP Package
Low Power Consumption
TTL/CMOS-Compatible Inputs

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The ADG708 and ADG709 are low voltage, CMOS analog multiplexers comprising eight single channels and four differential channels respectively. The ADG708 switches one of eight inputs (S1-S8) to a common output, D , as determined by the 3-bit binary address lines A0, A1, and A2. The ADG709 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low power consumption and operating supply range of 1.8 V to 5.5 V make the ADG708 and ADG709 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.
These switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on-resistance and leakage currents. On-resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or Demultiplexers, and have an input signal range that extends to the supplies.
The ADG708 and ADG709 are available in a 16 -lead TSSOP package.

REV. 0

[^0]
FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Operation. The ADG708 and ADG709 are fully specified and guaranteed with 3 V and 5 V single supply and $\pm 3 \mathrm{~V}$ dual supply rails.
2. Low R_{ON} (3 Ω Typical).
3. Low Power Consumption ($<0.01 \mu \mathrm{~W}$).
4. Guaranteed Break-Before-Make Switching Action.
5. Small 16-Lead TSSOP Package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 2000

[^1]

[^2]
ADG708/ADG709-SPECIFICATIONS ${ }^{1}$

NOTES

${ }^{1}$ Temperature range is as follows: B and C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
V_{DD} to V_{SS}. 7 V
V_{DD} to GND . -0.3 V to +7 V
V ${ }_{\text {SS }}$ to GND . +0.3 V to -3.5 V

30 mA , Whichever Occurs First
 30 mA , Whichever Occurs First
Peak Current, S or D
. 100 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D . 30 mA
Operating Temperature Range
Industrial (B, C Versions) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG708/ADG709 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. ADG708 Truth Table

A2	A1	A0	EN	Switch Condition
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

X = Don't Care
Table II. ADG709 Truth Table

A1	A0	EN	ON Switch Pair
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

X = Don't Care.

TSSOP Package, Power Dissipation 432 mW θ_{JA} Thermal Impedance . $150.4^{\circ} \mathrm{C} / \mathrm{W}$ θ_{JC} Thermal Impedance . $27.6^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $215^{\circ} \mathrm{C}$
Infrared (15 sec) . $220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG708BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG709BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG708CRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG709CRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16

TERMINOLOGY

\begin{tabular}{|c|c|c|c|}
\hline V_{DD} \& Most positive power supply potential. \& $\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})$ \& Delay time between the 50% and 90% points

\hline $\mathrm{V}_{\text {ss }}$ \& Most negative power supply in a dual supply application. In single supply applications, this \& \& of the EN digital input and the switch "ON" condition.

\hline GND \& should be tied to ground at the device Ground (0 V) Reference. \& $\mathrm{t}_{\text {OFF }}$ (EN) \& Delay time between the 50% and 90% points of the EN digital input and the switch "OFF" condition.

\hline S \& Source Terminal. May be an input or output. \& topen \& "C

\hline D \& Drain Terminal. May be an input or output. \& topen \& of both switches when switching from one address

\hline IN \& Logic Control Input. \& \& state to another.

\hline $\mathrm{R}_{\text {ON }}$ \& Ohmic resistance between D and S . \& Off Isolation \& A measure of unwanted signal coupling through an "OFF" switch.

\hline $\mathrm{R}_{\text {FLAT(ON) }}$

$\mathrm{I}_{\text {S }}(\mathrm{OFF})$ \& | Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range. |
| :--- |
| Source leakage current with the switch "OFF" | \& Crosstalk \& A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

\hline $\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$ \& Source leakage current with the switch \& \&

\hline I_{D} (OFF) \& Drain leakage current with the switch "OFF." \& Injection \& the digital input to the analog output during

\hline $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ \& Channel leakage current with the switch "ON." \& \& switching.

\hline $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ \& Analog voltage on terminals D, \& Bandwidth \& The frequency at which the output is attenuated

\hline C_{S} (OFF) \& "OFF" switch source capacitance. Measured with reference to ground. \& On Response \& | by 3 dBs . |
| :--- |
| The frequency response of the "ON" switch. |

\hline C_{D} (OFF) \& "OFF" switch drain capacitance. Measured with reference to ground. \& On Loss \& The loss due to the ON resistance of the switch. Maximum input voltage for Logic " 0 ."

\hline $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$ \& "ON" switch capacitance. Measured with reference to ground. \& $$
\mathrm{V}_{\mathrm{INH}}
$$ \& Minimum input voltage for Logic " 1. ."

\hline $\mathrm{C}_{\text {IN }}$ \& Digital Input Capacitance. \& $\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$ \& Input current of the digital input.

\hline $\mathrm{t}_{\text {TRansition }}$ \& Delay time measured between the 50% and 90% \& I_{DD} \& Positive Supply Current.

\hline \& points of the digital inputs and the switch "ON" \& $\underline{\text { ISS }}$ \& Negative Supply Current.

\hline
\end{tabular}

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 9. Leakage Currents as a Function of Temperature

Figure 10. Leakage Currents as a Function of Temperature

Figure 11. Supply Current vs. Input Switching Frequency

Figure 12. Off Isolation vs. Frequency

ADG708/ADG709

Figure 13. Crosstalk vs. Frequency

Figure 14. On Response vs. Frequency

Figure 15. Charge Injection vs. Source Voltage

Test Circuit 1. On Resistance

Test Circuit 2. Is (OFF)

* SIMILAR CONNECTION FOR ADG709

Test Circuit 3. I (OFF)

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

* SIMILAR CONNECTION FOR ADG709

Test Circuit 6. Break-Before-Make Delay, $t_{\text {OPEN }}$

* SIMILAR CONNECTION FOR ADG709

Test Circuit 7. Enable Delay, $t_{\text {ON }}$ (EN), $t_{\text {OFF }}$ (EN)

*SIMILAR CONNECTION FOR ADG709
Test Circuit 8. Charge Injection

* SIMILAR CONNECTION FOR ADG709
** CONNECT TO 2.4V FOR BANDWIDTH MEASUREMENTS

Test Circuit 9. OFF Isolation and Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

Power-Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in the data sheet. Digital and analog inputs should always be applied after power supplies and ground. For single supply operation, $\mathrm{V}_{\text {SS }}$ should be tied to GND as close to the device as possible.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1}$ Temperature range is as follows: B and C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

[^2]: NOTES
 ${ }^{1}$ Temperature ranges are as follows: B and C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

